LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2025

PMT2MC02 - REAL ANALYSIS-II

Date: 26-04-2025	Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM		

	SECTION A – K1 (CO1)			
	Answer ALL the questions $(5 \times 1 = 5)$			
1	Answer the following			
a)	Test the existence of the simultaneous limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$, $x^2+y^2\neq 0$.			
b)	What do you mean by approximating measure for a set <i>A</i> ?			
c)	Obtain the positive part of the function f defined on $[-3,3]$ by $f(x) = x^2 - 4$.			
d)	Give an example of a measure space.			
e)	Define a measurable rectangle in a product measurable space.			
	SECTION A – K2 (CO1)			
	Answer ALL the questions $(5 \times 1 = 5)$			
2	MCQ			
a)	The directional derivative of a function $f(x, y)$ in the direction of a unit vector u is			
	(i) $(\nabla f).(u)$ (ii) $D_1 f$ (iii) $D_2 f$ (iv) $D_{12} f$			
b)	Which of the following sets has Lebesgue outer measure zero?			
	(i) Set of rational numbers in [0, 1] (ii) The interval (0, 1)			
	(iii) Set of irrational numbers in $[0, 1]$ (iv) The real line R .			
c)	The Lebesgue Dominated Convergence Theorem requires that:			
	(i) $\lim f_n = f$ a. e. (ii) There exists an integrable function g such that $ f_n \le g$			
	(iii) f_n is bounded (iv) $\lim f_n = f$ a. e. and there exists an integrable function g such that $ f_n \le g$.			
d)	Which of the following functions satisfies the Jensen's inequality $\psi(\int f d\mu) \leq \int \psi \circ f d\mu$?			
	(i) $f(x) = x^2$ (ii) $f(x) = -x$ (iii) $f(x) = \log x$ (iv) $f(x) = \sin x$.			
e)	The product measure of two σ -finite measures is always			
	(i) Finite (ii) σ -finite (iii) Infinite (iv) Countable			
	SECTION B – K3 (CO2)			
	Answer any THREE of the following $(3 \times 10 = 30)$			
3	Examine the following statements:			
	(i) $ A < \infty$ and A is a uniformly continuous map from R^n into R^m for $A \in L(R^n, R^m)$,			
	(ii) When $A, B \in L(\mathbb{R}^n, \mathbb{R}^m), \ A + B\ \le \ A\ + \ B\ $ and $\ cA\ = c \ A\ $ where c is a scalar.			
	(iii) If $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $\mathbf{B} \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $\ \mathbf{B}\mathbf{A}\ \le \ \mathbf{B}\ \ \mathbf{A}\ $.			

Confirm the statement: Every interval is measurable. 5 Verify whether the Riemann integral of bounded function f over the finite interval [a, b] is equal to the corresponding integral in the Lebesgue sense. Define a measure μ on a σ – ring S and $\bar{S} = \{E \Delta N : E, M \in S \text{ and } N \subseteq M \text{ with } \mu(M) = 0\}.$ 6 Demonstrate that \bar{S} is a σ -ring. Let $[X, S, \mu]$ and $[Y, T, \nu]$ be σ -finite measure spaces and f is integrable with respect to the product measure $\mu \times \nu$, then inspect the following statements $f_x \in L^1(\nu)$ for almost $x \in X$. $f^y \in L^1(\mu)$ for almost $y \in Y$. (ii) For each $x \in X$ and $y \in Y$, define φ and ψ by $\varphi(x) = \int_{Y} f_x d\nu$, $\psi(y) = \int_{X} f^y d\mu$. Then (iii) the functions $\varphi \in L^1(\mu)$, $\psi \in L^1(\nu)$ and $\int_X \varphi \, d\mu = \int_{X \times Y} f \, d(\mu \times \nu) = \int_Y \psi \, d\nu$. SECTION C – K4 (CO3) Answer any TWO of the following $(2 \times 12.5 = 25)$ Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x, y) = (3x + 2y + y^2 + |xy|, 2x + 3y + x^2 + |xy|)$. Verify the following: 8 (i) f is differentiable at the origin. (ii) f is continuous at the origin. (iii) Df is invertible at the origin. Determine the value of the integral $\int_0^\infty e^{-x} \cos \sqrt{x} \ dx$ by applying appropriate theorem. 9 Examine the statement: Let $\{f_n\}$ be a sequence of measurable functions which is fundamental in measure, then there exists a measurable function f such that $f_n \to f$ in measure. Express Hahn decomposition theorem and prove it. Is the decomposition always the unique? Provide justification. SECTION D – K5 (CO4) Answer any ONE of the following $(1 \times 15 = 15)$ State implicit function theorem and establish its proof. 12 Prove Minkowski's inequality for $p \ge 1$ and $f, g \in L^p(\mu)$. Examine the necessary conditions under which 13 equality holds and justify. SECTION E - K6 (CO5) Answer any ONE of the following $(1 \times 20 = 20)$ (i) Construct a non-measurable set and prove its existence. (ii) Suppose that [X, S] and [Y, T] be measurable spaces and $E \in S \times T$. Demonstrate that $E_x \in \mathcal{T}, E^y \in \mathcal{S}$ for each $x \in X$ and $y \in Y$. (15+5)Validate the statement: Let $\{f_n\}$, $n \ge 1$ be a sequence of non-negative measurable functions. Then $liminf \int f_n dx \ge \int liminf f_n dx$. Use the statement to deduce Lebesgue monotone convergence theorem.

####